Extensions 1→N→G→Q→1 with N=C62 and Q=C22

Direct product G=N×Q with N=C62 and Q=C22
dρLabelID
C22×C62248C2^2xC62248,12

Semidirect products G=N:Q with N=C62 and Q=C22
extensionφ:Q→Aut NdρLabelID
C62⋊C22 = C22×D31φ: C22/C2C2 ⊆ Aut C62124C62:C2^2248,11

Non-split extensions G=N.Q with N=C62 and Q=C22
extensionφ:Q→Aut NdρLabelID
C62.1C22 = Dic62φ: C22/C2C2 ⊆ Aut C622482-C62.1C2^2248,3
C62.2C22 = C4×D31φ: C22/C2C2 ⊆ Aut C621242C62.2C2^2248,4
C62.3C22 = D124φ: C22/C2C2 ⊆ Aut C621242+C62.3C2^2248,5
C62.4C22 = C2×Dic31φ: C22/C2C2 ⊆ Aut C62248C62.4C2^2248,6
C62.5C22 = C31⋊D4φ: C22/C2C2 ⊆ Aut C621242C62.5C2^2248,7
C62.6C22 = D4×C31central extension (φ=1)1242C62.6C2^2248,9
C62.7C22 = Q8×C31central extension (φ=1)2482C62.7C2^2248,10

׿
×
𝔽